Gallic Acid-Triethylene Glycol Aptadendrimers Synthesis, Biophysical Characterization and Cellular Evaluation
Herein, we describe the synthesis of an aptadendrimer by covalent bioconjugation of a gallic acid-triethylene glycol (GATG) dendrimer with the G-quadruplex (G4) AT11 aptamer (a modified version of AS1411) at the surface. We evaluated the loading and interaction of an acridine orange ligand, termed C...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Book |
Published: |
MDPI AG,
2022-11-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Herein, we describe the synthesis of an aptadendrimer by covalent bioconjugation of a gallic acid-triethylene glycol (GATG) dendrimer with the G-quadruplex (G4) AT11 aptamer (a modified version of AS1411) at the surface. We evaluated the loading and interaction of an acridine orange ligand, termed C<sub>8,</sub> that acts as an anticancer drug and binder/stabilizer of the G4 structure of AT11. Dynamic light scattering experiments demonstrated that the aptadendrimer was approximately 3.1 nm in diameter. Both steady-state and time-resolved fluorescence anisotropy evidenced the interaction between the aptadendrimer and C<sub>8</sub>. Additionally, we demonstrated that the iodine atom of the C<sub>8</sub> ligand acts as an effective intramolecular quencher in solution, while upon complexation with the aptadendrimer, it adopts a more extended conformation. Docking studies support this conclusion. Release experiments show a delivery of C<sub>8</sub> after 4 h. The aptadendrimers tend to localize in the cytoplasm of various cell lines studied as demonstrated by confocal microscopy. The internalization of the aptadendrimers is not nucleolin-mediated or by passive diffusion, but via endocytosis. MTT studies with prostate cancer cells and non-malignant cells evidenced high cytotoxicity mainly due to the C<sub>8</sub> ligand. The rapid internalization of the aptadendrimers and the fluorescence properties make them attractive for the development of potential nanocarriers. |
---|---|
Item Description: | 10.3390/pharmaceutics14112456 1999-4923 |