Machine learning algorithms using national registry data to predict loss to follow-up during tuberculosis treatment
Abstract Background Identifying patients at increased risk of loss to follow-up (LTFU) is key to developing strategies to optimize the clinical management of tuberculosis (TB). The use of national registry data in prediction models may be a useful tool to inform healthcare workers about risk of LTFU...
Tallennettuna:
Päätekijät: | , , , , , , , , , , , |
---|---|
Aineistotyyppi: | Kirja |
Julkaistu: |
BMC,
2024-05-01T00:00:00Z.
|
Aiheet: | |
Linkit: | Connect to this object online. |
Tagit: |
Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!
|
Internet
Connect to this object online.3rd Floor Main Library
Hyllypaikka: |
A1234.567 |
---|---|
Nide 1 | Saatavissa |