Construction and validation of predictive models for intravenous immunoglobulin-resistant Kawasaki disease using an interpretable machine learning approach
Background Intravenous immunoglobulin (IVIG)-resistant Kawasaki disease is associated with coronary artery lesion development. Purpose This study aimed to explore the factors associated with IVIG-resistance and construct and validate an interpretable machine learning (ML) prediction model in clinica...
保存先:
主要な著者: | , , , , , , , |
---|---|
フォーマット: | 図書 |
出版事項: |
The Korean Pediatric Society,
2024-08-01T00:00:00Z.
|
主題: | |
オンライン・アクセス: | Connect to this object online. |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
インターネット
Connect to this object online.3rd Floor Main Library
請求記号: |
A1234.567 |
---|---|
所蔵 1 | 利用可 |