A mouse pancreatic organoid model to compare PD-L1 blocking antibodies

Immune checkpoint inhibitors (ICIs) have changed the therapeutic landscape for cancer patients, but diabetes, a rare, severe immune-related endocrinopathy, is linked to ICI therapy. It is unclear whether glycosylation of ICIs may play a role in the development of this adverse event and how the physi...

Full description

Saved in:
Bibliographic Details
Main Authors: Guangyuan Li (Author), Susmita Ghosh (Author), JuMe Park (Author), Hyunsu Shin (Author), Mamatha Garige (Author), Gregory Reaman (Author), Carole Sourbier (Author)
Format: Book
Published: Taylor & Francis Group, 2022-12-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Immune checkpoint inhibitors (ICIs) have changed the therapeutic landscape for cancer patients, but diabetes, a rare, severe immune-related endocrinopathy, is linked to ICI therapy. It is unclear whether glycosylation of ICIs may play a role in the development of this adverse event and how the physiological effects of different ICIs on pancreatic cells should be evaluated. We used a mouse pancreatic organoid model to compare three PD-L1 blocking antibodies in the presence or absence of IFNγ using a metabolic bioanalyzer. Modulation of ICI glycosylation altered its metabolic effects on mouse pancreatic organoids, suggesting that this model could be used to monitor and compare ICIs and to study the mechanisms underlying the development of IC-mediated diabetes.
Item Description:10.1080/19420862.2022.2139886
1942-0870
1942-0862