Endogenous Eye Blinking Rate to Support Human-Automation Interaction for E-Learning Multimedia Content Specification

As intelligent systems demand for human-automation interaction increases, the need for learners' cognitive traits adaptation in adaptive educational hypermedia systems (AEHS) has dramatically increased. AEHS utilize learners' cognitive processes to attain fair human-automation interaction...

Full description

Saved in:
Bibliographic Details
Main Authors: Othmar Othmar Mwambe (Author), Phan Xuan Tan (Author), Eiji Kamioka (Author)
Format: Book
Published: MDPI AG, 2021-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As intelligent systems demand for human-automation interaction increases, the need for learners' cognitive traits adaptation in adaptive educational hypermedia systems (AEHS) has dramatically increased. AEHS utilize learners' cognitive processes to attain fair human-automation interaction for their adaptive processes. However, obtaining accurate cognitive trait for the AEHS adaptation process has been a challenge due to the fact that it is difficult to determine what extent such traits can comprehend system functionalities. Hence, this study has explored correlation among learners' pupil size dilation, learners' reading time and endogenous blinking rate when using AEHS so as to enable cognitive load estimation in support of AEHS adaptive process. An eye-tracking sensor was used and the study found correlation among learners' pupil size dilation, reading time and learners' endogenous blinking rate. Thus, the results show that endogenous blinking rate, pupil size and reading time are not only AEHS reliable parameters for cognitive load measurement but can also support human-automation interaction at large.
Item Description:10.3390/educsci11020049
2227-7102