Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data
Abstract Background Large-scale collaborative precision medicine initiatives (e.g., The Cancer Genome Atlas (TCGA)) are yielding rich multi-omics data. Integrative analyses of the resulting multi-omics data, such as somatic mutation, copy number alteration (CNA), DNA methylation, miRNA, gene express...
Kaydedildi:
Asıl Yazarlar: | , , , , |
---|---|
Materyal Türü: | Kitap |
Baskı/Yayın Bilgisi: |
BMC,
2018-09-01T00:00:00Z.
|
Konular: | |
Online Erişim: | Connect to this object online. |
Etiketler: |
Etiketle
Etiket eklenmemiş, İlk siz ekleyin!
|
Internet
Connect to this object online.3rd Floor Main Library
Yer Numarası: |
A1234.567 |
---|---|
Kopya Bilgisi 1 | Kütüphanede |