Applying interpretable machine learning workflow to evaluate exposure-response relationships for large‐molecule oncology drugs
Abstract The application of logistic regression (LR) and Cox Proportional Hazard (CoxPH) models are well‐established for evaluating exposure-response (E-R) relationship in large molecule oncology drugs. However, applying machine learning (ML) models on evaluating E-R relationships has not been widel...
保存先:
主要な著者: | , , , , |
---|---|
フォーマット: | 図書 |
出版事項: |
Wiley,
2022-12-01T00:00:00Z.
|
主題: | |
オンライン・アクセス: | Connect to this object online. |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
インターネット
Connect to this object online.3rd Floor Main Library
請求記号: |
A1234.567 |
---|---|
所蔵 1 | 利用可 |