TDP-43 mislocalization drives neurofilament changes in a novel model of TDP-43 proteinopathy

Mislocalization of the TAR DNA-binding protein 43 (TDP-43; encoded by TARDBP) from the nucleus to the cytoplasm is a common feature of neurodegenerative conditions such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). The downstream in vivo cellular effects of thi...

Full description

Saved in:
Bibliographic Details
Main Authors: Rachel Atkinson (Author), Jacqueline Leung (Author), James Bender (Author), Matthew Kirkcaldie (Author), James Vickers (Author), Anna King (Author)
Format: Book
Published: The Company of Biologists, 2021-02-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mislocalization of the TAR DNA-binding protein 43 (TDP-43; encoded by TARDBP) from the nucleus to the cytoplasm is a common feature of neurodegenerative conditions such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). The downstream in vivo cellular effects of this mislocalization are not well understood. To investigate the impact of mislocalized TDP-43 on neuronal cell bodies, axons and axonal terminals, we utilized the mouse visual system to create a new model of TDP-43 proteinopathy. Mouse (C57BL/6J) retinal ganglion cells (RGCs) were transduced with GFP-tagged human wild-type TDP-43 (hTDP-WT-GFP) and human TDP-43 with a mutation in the nuclear localization sequence (hTDP-ΔNLS-GFP), to cause TDP-43 mislocalization, with ∼60% transduction efficiency achieved. Expression of both hTDP-WT-GFP and hTDP-ΔNLS-GFP resulted in changes to neurofilament expression, with cytoplasmic TDP-43 being associated with significantly (P<0.05) increased neurofilament heavy expression in the cell soma, and both forms of altered TDP-43 leading to significantly (P<0.05) decreased numbers of neurofilament-positive axons within the optic nerve. Alterations to neurofilament proteins were associated with significantly (P<0.05) increased microglial density in the optic nerve and retina. Furthermore, expression of hTDP-WT-GFP was associated with a significant (P<0.05) increase in pre-synaptic input into RGCs in the retina. The current study has developed a new model that allows detailed examination of alterations to TDP-43 and will contribute to the knowledge of TDP-43-mediated neuronal alterations and degeneration.
Item Description:1754-8403
1754-8411
10.1242/dmm.047548