Web App for prediction of hospitalisation in Intensive Care Unit by covid-19

ABSTRACT Objective: To develop a Web App from a predictive model to estimate the risk of Intensive Care Unit (ICU) admission for patients with covid-19. Methods: An applied technological production research was carried out with the development of Streamlit using Python, considering the decision tree...

Full description

Saved in:
Bibliographic Details
Main Authors: Greici Capellari Fabrizzio (Author), Alacoque Lorenzini Erdmann (Author), Lincoln Moura de Oliveira (Author)
Format: Book
Published: Associação Brasileira de Enfermagem, 2023-12-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_51a1bf1bca914fa99290fa7727d0555c
042 |a dc 
100 1 0 |a Greici Capellari Fabrizzio  |e author 
700 1 0 |a Alacoque Lorenzini Erdmann  |e author 
700 1 0 |a Lincoln Moura de Oliveira  |e author 
245 0 0 |a Web App for prediction of hospitalisation in Intensive Care Unit by covid-19 
260 |b Associação Brasileira de Enfermagem,   |c 2023-12-01T00:00:00Z. 
500 |a 1984-0446 
500 |a 10.1590/0034-7167-2022-0740 
520 |a ABSTRACT Objective: To develop a Web App from a predictive model to estimate the risk of Intensive Care Unit (ICU) admission for patients with covid-19. Methods: An applied technological production research was carried out with the development of Streamlit using Python, considering the decision tree model that presented the best performance (AUC 0.668). Results: Based on the variables associated with Precision Nursing, Streamlit stratifies patients admitted to clinical units who are most likely to be admitted to the Intensive Care Unit, serving as a decision-making support tool for healthcare professionals. Final considerations: The performance of the model may have been influenced by the start of vaccination during the data collection period, however, the Web App via Streamlit proved to be a feasible tool for presenting research results, due to the ease of understanding by nurses and its potential for supporting clinical decision-making. 
546 |a EN 
546 |a ES 
546 |a PT 
690 |a Inventions 
690 |a Forecasting 
690 |a Artificial Intelligence 
690 |a Covid-19 
690 |a Precision Medicine 
690 |a Nursing 
690 |a RT1-120 
655 7 |a article  |2 local 
786 0 |n Revista Brasileira de Enfermagem, Vol 76, Iss 6 (2023) 
787 0 |n http://revodonto.bvsalud.org/scielo.php?script=sci_arttext&pid=S0034-71672023001001200&lng=en&tlng=en 
787 0 |n http://revodonto.bvsalud.org/pdf/reben/v76n6/0034-7167-reben-76-06-e20220740.pdf 
787 0 |n https://doaj.org/toc/1984-0446 
856 4 1 |u https://doaj.org/article/51a1bf1bca914fa99290fa7727d0555c  |z Connect to this object online.