Federated Motor Imagery Classification for Privacy-Preserving Brain-Computer Interfaces
Training an accurate classifier for EEG-based brain-computer interface (BCI) requires EEG data from a large number of users, whereas protecting their data privacy is a critical consideration. Federated learning (FL) is a promising solution to this challenge. This paper proposes Federated classificat...
Сохранить в:
Главные авторы: | , , , , |
---|---|
Формат: | |
Опубликовано: |
IEEE,
2024-01-01T00:00:00Z.
|
Предметы: | |
Online-ссылка: | Connect to this object online. |
Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Internet
Connect to this object online.3rd Floor Main Library
Шифр: |
A1234.567 |
---|---|
Копировать 1 | Доступно |