Repression of COUP-TFI Improves Bone Marrow-Derived Mesenchymal Stem Cell Differentiation into Insulin-Producing Cells

Identifying molecular mechanisms that regulate insulin expression in bone marrow-derived mesenchymal stem cells (bmMSCs) can provide clues on how to stimulate the differentiation of bmMSCs into insulin-producing cells (IPCs), which can be used as a therapeutic approach against type 1 diabetes (T1D)....

Full description

Saved in:
Bibliographic Details
Main Authors: Tao Zhang (Author), Xiao-Hang Li (Author), Dian-Bao Zhang (Author), Xiao-Yu Liu (Author), Feng Zhao (Author), Xue-Wen Lin (Author), Rui Wang (Author), Hong-Xin Lang (Author), Xi-Ning Pang (Author)
Format: Book
Published: Elsevier, 2017-09-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Identifying molecular mechanisms that regulate insulin expression in bone marrow-derived mesenchymal stem cells (bmMSCs) can provide clues on how to stimulate the differentiation of bmMSCs into insulin-producing cells (IPCs), which can be used as a therapeutic approach against type 1 diabetes (T1D). As repression factors may inhibit differentiation, the efficiency of this process is insufficient for cell transplantation. In this study, we used the mouse insulin 2 (Ins2) promoter sequence and performed a DNA affinity precipitation assay combined with liquid chromatography-mass spectrometry to identify the transcription factor, chicken ovalbumin upstream promoter transcriptional factor I (COUP-TFI). Functionally, bmMSCs were reprogrammed into IPCs via COUP-TFI suppression and MafA overexpression. The differentiated cells expressed higher levels of genes specific for islet endocrine cells, and they released C-peptide and insulin in response to glucose stimulation. Transplantation of IPCs into streptozotocin-induced diabetic mice caused a reduction in hyperglycemia. Mechanistically, COUP-TFI bound to the DR1 (direct repeats with 1 spacer) element in the Ins2 promoter, thereby negatively regulating promoter activity. Taken together, the data provide a novel mechanism by which COUP-TFI acts as a negative regulator in the Ins2 promoter. The differentiation of bmMSCs into IPCs could be improved by knockdown of COUP-TFI, which may provide a novel stem cell-based therapy for T1D. Keywords: siRNAs, differentiation, stem cell transplantation, diabetes, mesenchymal stem cells
Item Description:2162-2531
10.1016/j.omtn.2017.06.016