On the estimation of misclassification probabilities of chronic kidney disease using continuous time hidden Markov models
Introduction: The severity of chronic kidney disease (CKD) is reflected in the form of stages of CKD and can be decided on the basis of estimated glomerular filtration rate (eGFR). The computation of eFGR may have computational and measurement errors which may lead to misclassification of stages. Ob...
Enregistré dans:
Auteurs principaux: | , , , |
---|---|
Format: | Livre |
Publié: |
Society of Diabetic Nephropathy Prevention,
2019-01-01T00:00:00Z.
|
Sujets: | |
Accès en ligne: | Connect to this object online. |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Soyez le premier à ajouter un commentaire!