Improving Walking Energy Efficiency in Transtibial Amputees Through the Integration of a Low-Power Actuator in an ESAR Foot

Reducing energy consumption during walking is a critical goal for transtibial amputees. The study presents the evaluation of a semi-active prosthesis with five transtibial amputees. The prosthesis has a low-power actuator integrated in parallel into an energy-storing-and-releasing foot. The actuator...

Full description

Saved in:
Bibliographic Details
Main Authors: Alessandro Mazzarini (Author), Ilaria Fagioli (Author), Huseyin Eken (Author), Chiara Livolsi (Author), Tommaso Ciapetti (Author), Alessandro Maselli (Author), Michele Piazzini (Author), Claudio Macchi (Author), Angelo Davalli (Author), Emanuele Gruppioni (Author), Emilio Trigili (Author), Simona Crea (Author), Nicola Vitiello (Author)
Format: Book
Published: IEEE, 2024-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_7c3d22d25d1244a59c36cada8a3909b8
042 |a dc 
100 1 0 |a Alessandro Mazzarini  |e author 
700 1 0 |a Ilaria Fagioli  |e author 
700 1 0 |a Huseyin Eken  |e author 
700 1 0 |a Chiara Livolsi  |e author 
700 1 0 |a Tommaso Ciapetti  |e author 
700 1 0 |a Alessandro Maselli  |e author 
700 1 0 |a Michele Piazzini  |e author 
700 1 0 |a Claudio Macchi  |e author 
700 1 0 |a Angelo Davalli  |e author 
700 1 0 |a Emanuele Gruppioni  |e author 
700 1 0 |a Emilio Trigili  |e author 
700 1 0 |a Simona Crea  |e author 
700 1 0 |a Nicola Vitiello  |e author 
245 0 0 |a Improving Walking Energy Efficiency in Transtibial Amputees Through the Integration of a Low-Power Actuator in an ESAR Foot 
260 |b IEEE,   |c 2024-01-01T00:00:00Z. 
500 |a 1558-0210 
500 |a 10.1109/TNSRE.2024.3379904 
520 |a Reducing energy consumption during walking is a critical goal for transtibial amputees. The study presents the evaluation of a semi-active prosthesis with five transtibial amputees. The prosthesis has a low-power actuator integrated in parallel into an energy-storing-and-releasing foot. The actuator is controlled to compress the foot during the stance phase, supplementing the natural compression due to the user’s dynamic interaction with the ground, particularly during the ankle dorsiflexion phase, and to release the energy stored in the foot during the push-off phase, to enhance propulsion. The control strategy is adaptive to the user’s gait patterns and speed. The clinical protocol to evaluate the system included treadmill and overground walking tasks. The results showed that walking with the semi-active prosthesis reduced the Physiological Cost Index of transtibial amputees by up to 16% compared to walking using the subjects’ proprietary prosthesis. No significant alterations were observed in the spatiotemporal gait parameters of the participants, indicating the module’s compatibility with users’ natural walking patterns. These findings highlight the potential of the mechatronic actuator in effectively reducing energy expenditure during walking for transtibial amputees. The proposed prosthesis may bring a positive impact on the quality of life, mobility, and functional performance of individuals with transtibial amputation. 
546 |a EN 
690 |a Prosthetics and exoskeletons 
690 |a wearable robots 
690 |a rehabilitation 
690 |a Medical technology 
690 |a R855-855.5 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol 32, Pp 1397-1406 (2024) 
787 0 |n https://ieeexplore.ieee.org/document/10476491/ 
787 0 |n https://doaj.org/toc/1558-0210 
856 4 1 |u https://doaj.org/article/7c3d22d25d1244a59c36cada8a3909b8  |z Connect to this object online.