miR-301a Suppression within Fibroblasts Limits the Progression of Fibrosis through the TSC1/mTOR Pathway

Pulmonary fibrosis has been characterized by abnormal proliferation of fibroblasts and massive deposition of the extracellular matrix, which results from a complex interplay of chronic injury and inflammatory responses. MicroRNA-301a (miR-301a) is activated by multiple inflammatory stimulators, cont...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiexuan Wang (Author), Xun Li (Author), Mingtian Zhong (Author), Yansheng Wang (Author), Liming Zou (Author), Miaomiao Wang (Author), Xiaoli Gong (Author), Xinjie Wang (Author), Chengzhi Zhou (Author), Xiaodong Ma (Author), Ming Liu (Author)
Format: Book
Published: Elsevier, 2020-09-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pulmonary fibrosis has been characterized by abnormal proliferation of fibroblasts and massive deposition of the extracellular matrix, which results from a complex interplay of chronic injury and inflammatory responses. MicroRNA-301a (miR-301a) is activated by multiple inflammatory stimulators, contributing to multiple tumorigenesis and autoimmune diseases. This study showed that miR-301a was overexpressed in a bleomycin-induced murine model of pulmonary fibrosis and patients with idiopathic pulmonary fibrosis (IPF). In addition, miR-301a was activated by transforming growth factor β (TGF-β) and interleukin 6 (IL-6) in normal and IPF fibroblasts, which was markedly reversed by the signal transducer and activator of transcription 3 (STAT3) inhibitor. The genetic ablation of miR-301a in mice reduced bleomycin-induced lung fibrosis, and the downregulation of miR-301a restrained proliferation and activation of fibroblasts. Furthermore, this study demonstrated that TSC1 was a functional target of miR-301a in fibroblasts, and the negative regulation of TSC1 by miR-301a promoted the severity of pulmonary fibrosis through the mammalian target of rapamycin (mTOR) signaling pathway. The blocking of miR-301a by the intravenous injection of antagomiR-301a inhibited the proliferation of fibroblasts and the structural destruction of lung tissues in the bleomycin-induced lung fibrosis mouse model. The findings revealed the crucial role of the miR-301a/TSC1/mTOR axis in the pathogenesis of pulmonary fibrosis, suggesting that miR-301a might serve as a potential therapeutic target.
Item Description:2162-2531
10.1016/j.omtn.2020.05.027