Development of composite PLGA microspheres containing exenatide-encapsulated lecithin nanoparticles for sustained drug release

This study aimed to prepare poly (D, L-lactic-co-glycolic acid) microspheres (PLGA-Ms) by a modified solid-in-oil-in-water (S/O/W) multi-emulsion technique in order to achieve sustained release with reduced initial burst and maintain efficient drug concentration for a prolonged period of time. Compo...

Full description

Saved in:
Bibliographic Details
Main Authors: Ni Dong (Author), Chune Zhu (Author), Junhuang Jiang (Author), Di Huang (Author), Xing Li (Author), Guilan Quan (Author), Yang Liu (Author), Wen Tan (Author), Xin Pan (Author), Chuanbin Wu (Author)
Format: Book
Published: Elsevier, 2020-05-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aimed to prepare poly (D, L-lactic-co-glycolic acid) microspheres (PLGA-Ms) by a modified solid-in-oil-in-water (S/O/W) multi-emulsion technique in order to achieve sustained release with reduced initial burst and maintain efficient drug concentration for a prolonged period of time. Composite PLGA microspheres containing exenatide-encapsulated lecithin nanoparticles (Ex-NPs-PLGA-Ms) were obtained by initial fabrication of exenatide-loaded lecithin nanoparticles (Ex-NPs) via the alcohol injection method, followed by encapsulation of Ex-NPs into PLGA microspheres. Compared to Ms prepared by the conventional water-in-oil-in-water (W/O/W) technique (Ex-PLGA-Ms), Ex-NPs-PLGA-Ms showed a more uniform particle size distribution, reduced initial burst release, and sustained release for over 60 d in vitro. Cytotoxicity studies showed that Ms prepared by both techniques had superior biocompatibility without causing any detectable cytotoxicity. In pharmacokinetic studies, the effective drug concentration was maintained for over 30 d following a single subcutaneous injection of two types of Ms formulation in rats, potentially prolonging the therapeutic action of Ex. In addition, administration of Ex-NPs-PLGA-Ms resulted in a more smooth plasma concentration-time profile with a higher area under the curve (AUC) compared to that of Ex-PLGA-Ms. Overall, Ex-NPs-PLGA-Ms prepared by the novel S/O/W method could be a promising sustained drug release system with reduced initial burst release and prolonged therapeutic efficacy.
Item Description:1818-0876
10.1016/j.ajps.2019.01.002