Ellipsoid clustering machine: a front line to aid in disease diagnosis - DOI: 10.3395/reciis.v1i2.Sup.101en

This study presents a new machine learning strategy to address the disease diagnosis classification problem that comprises an unknown number of disease classes. This is exemplified by a software called Ellipsoid Clustering Machine (ECM) that identifies conserved regions in mass spectrometry proteomi...

Popoln opis

Shranjeno v:
Bibliografske podrobnosti
Main Authors: Paulo Costa Carvalho (Author), Juliana de Saldanha da Gama Fischer (Author), Valmir C. Barbosa (Author), Maria da Glória da Costa Carvalho (Author), Wim Degrave (Author), Gilberto Barbosa Domont (Author)
Format: Knjiga
Izdano: Instituto de Comunicação e Informação Científica e Tecnológica em Saúde (Icict) da Fundação Oswaldo Cruz (Fiocruz), 2007-12-01T00:00:00Z.
Teme:
Online dostop:Connect to this object online.
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_8af1f7a1146f407b9a74fa81a1edc9b4
042 |a dc 
100 1 0 |a Paulo Costa Carvalho  |e author 
700 1 0 |a Juliana de Saldanha da Gama Fischer  |e author 
700 1 0 |a Valmir C. Barbosa  |e author 
700 1 0 |a Maria da Glória da Costa Carvalho  |e author 
700 1 0 |a Wim Degrave  |e author 
700 1 0 |a Gilberto Barbosa Domont  |e author 
245 0 0 |a Ellipsoid clustering machine: a front line to aid in disease diagnosis - DOI: 10.3395/reciis.v1i2.Sup.101en 
260 |b Instituto de Comunicação e Informação Científica e Tecnológica em Saúde (Icict) da Fundação Oswaldo Cruz (Fiocruz),   |c 2007-12-01T00:00:00Z. 
500 |a 1981-6278 
520 |a This study presents a new machine learning strategy to address the disease diagnosis classification problem that comprises an unknown number of disease classes. This is exemplified by a software called Ellipsoid Clustering Machine (ECM) that identifies conserved regions in mass spectrometry proteomic profiles obtained from control subjects and uses these to estimate classification boundaries based on sample variance. The software can also be used for visual inspection of data reproducibility. ECM was evaluated using mass spectrometry protein profiles obtained from serum of Hodgkin's disease patients (HD) and control subjects. According to the leave-one-out cross validation, ECM completely separated both groups based only on the information derived from four selected mass spectral peaks. Classification details and a 3D graphical model showing the separation between the control subject cluster and HD patients is also presented. The software is available on the project website together with online interactive models of the dataset and an animation demonstrating the method. 
546 |a EN 
546 |a ES 
546 |a PT 
690 |a Mass spectrometry 
690 |a machine learning 
690 |a pattern recognition 
690 |a clustering 
690 |a Hodgkin's disease 
690 |a proteomics 
690 |a Communication. Mass media 
690 |a P87-96 
690 |a Public aspects of medicine 
690 |a RA1-1270 
655 7 |a article  |2 local 
786 0 |n RECIIS, Vol 1, Iss 2, Pp Sup308-Sup315 (2007) 
787 0 |n http://www.reciis.cict.fiocruz.br/index.php/reciis/article/view/101/114 
787 0 |n https://doaj.org/toc/1981-6278 
856 4 1 |u https://doaj.org/article/8af1f7a1146f407b9a74fa81a1edc9b4  |z Connect to this object online.