Predicting undergraduate academic performance in a leading Peruvian university: A machine learning approach

Despite improved higher education accessibility in low and middle-income countries (LMICs), challenges persist in student drop-out, especially for socio-economically disadvantaged students. While machine learning models have enhanced our understanding of this challenge by predicting academic perform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fabio Salas (Verfasst von), Josué Caldas (Verfasst von)
Format: Buch
Veröffentlicht: Pontificia Universidad Católica del Perú, 2024-04-01T00:00:00Z.
Schlagworte:
Online-Zugang:Connect to this object online.
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

Online

Connect to this object online.

3rd Floor Main Library

Bestandsangaben von 3rd Floor Main Library
Signatur: A1234.567
Exemplar 1 Verfügbar