Predicting undergraduate academic performance in a leading Peruvian university: A machine learning approach
Despite improved higher education accessibility in low and middle-income countries (LMICs), challenges persist in student drop-out, especially for socio-economically disadvantaged students. While machine learning models have enhanced our understanding of this challenge by predicting academic perform...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Veröffentlicht: |
Pontificia Universidad Católica del Perú,
2024-04-01T00:00:00Z.
|
Schlagworte: | |
Online-Zugang: | Connect to this object online. |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Online
Connect to this object online.3rd Floor Main Library
Signatur: |
A1234.567 |
---|---|
Exemplar 1 | Verfügbar |