Predicting 1-Hour Thrombolysis Effect of r-tPA in Patients With Acute Ischemic Stroke Using Machine Learning Algorithm

Background: Thrombolysis with r-tPA is recommended for patients after acute ischemic stroke (AIS) within 4.5 h of symptom onset. However, only a few patients benefit from this therapeutic regimen. Thus, we aimed to develop an interpretable machine learning (ML)-based model to predict the thrombolysi...

Whakaahuatanga katoa

I tiakina i:
Ngā taipitopito rārangi puna kōrero
Ngā kaituhi matua: Bin Zhu (Author), Jianlei Zhao (Author), Mingnan Cao (Author), Wanliang Du (Author), Liuqing Yang (Author), Mingliang Su (Author), Yue Tian (Author), Mingfen Wu (Author), Tingxi Wu (Author), Manxia Wang (Author), Xingquan Zhao (Author), Zhigang Zhao (Author)
Hōputu: Pukapuka
I whakaputaina: Frontiers Media S.A., 2022-01-01T00:00:00Z.
Ngā marau:
Urunga tuihono:Connect to this object online.
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_8cbe026625d5412c8aea0cd3b2ee64f7
042 |a dc 
100 1 0 |a Bin Zhu  |e author 
700 1 0 |a Jianlei Zhao  |e author 
700 1 0 |a Mingnan Cao  |e author 
700 1 0 |a Wanliang Du  |e author 
700 1 0 |a Liuqing Yang  |e author 
700 1 0 |a Mingliang Su  |e author 
700 1 0 |a Yue Tian  |e author 
700 1 0 |a Mingfen Wu  |e author 
700 1 0 |a Tingxi Wu  |e author 
700 1 0 |a Manxia Wang  |e author 
700 1 0 |a Xingquan Zhao  |e author 
700 1 0 |a Zhigang Zhao  |e author 
245 0 0 |a Predicting 1-Hour Thrombolysis Effect of r-tPA in Patients With Acute Ischemic Stroke Using Machine Learning Algorithm 
260 |b Frontiers Media S.A.,   |c 2022-01-01T00:00:00Z. 
500 |a 1663-9812 
500 |a 10.3389/fphar.2021.759782 
520 |a Background: Thrombolysis with r-tPA is recommended for patients after acute ischemic stroke (AIS) within 4.5 h of symptom onset. However, only a few patients benefit from this therapeutic regimen. Thus, we aimed to develop an interpretable machine learning (ML)-based model to predict the thrombolysis effect of r-tPA at the super-early stage.Methods: A total of 353 patients with AIS were divided into training and test data sets. We then used six ML algorithms and a recursive feature elimination (RFE) method to explore the relationship among the clinical variables along with the NIH stroke scale score 1 h after thrombolysis treatment. Shapley additive explanations and local interpretable model-agnostic explanation algorithms were applied to interpret the ML models and determine the importance of the selected features.Results: Altogether, 353 patients with an average age of 63.0 (56.0-71.0) years were enrolled in the study. Of these patients, 156 showed a favorable thrombolysis effect and 197 showed an unfavorable effect. A total of 14 variables were enrolled in the modeling, and 6 ML algorithms were used to predict the thrombolysis effect. After RFE screening, seven variables under the gradient boosting decision tree (GBDT) model (area under the curve = 0.81, specificity = 0.61, sensitivity = 0.9, and F1 score = 0.79) demonstrated the best performance. Of the seven variables, activated partial thromboplastin clotting time (time), B-type natriuretic peptide, and fibrin degradation products were the three most important clinical characteristics that might influence r-tPA efficiency.Conclusion: This study demonstrated that the GBDT model with the seven variables could better predict the early thrombolysis effect of r-tPA. 
546 |a EN 
690 |a thrombolysis 
690 |a acute ischemic stroke 
690 |a machine learning algorithms 
690 |a r-tPA 
690 |a models 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Frontiers in Pharmacology, Vol 12 (2022) 
787 0 |n https://www.frontiersin.org/articles/10.3389/fphar.2021.759782/full 
787 0 |n https://doaj.org/toc/1663-9812 
856 4 1 |u https://doaj.org/article/8cbe026625d5412c8aea0cd3b2ee64f7  |z Connect to this object online.