Evaluating neurosurgical biopsies for CNS tumor diagnoses: An algorithmic and pattern based approach

The 2016 and 2021 World Health Organization (WHO) Classifications of Tumors of the Central Nervous System (CNS) reflect the importance of integrating molecular analysis into CNS tumor diagnosis and classification, adding to the complexity of any surgical neuropathology practice. On the other hand, o...

Full description

Saved in:
Bibliographic Details
Main Authors: M Adelita Vizcaino (Author), Aditya Raghunathan (Author)
Format: Book
Published: Wolters Kluwer Medknow Publications, 2022-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_8edb9a2ca4e34cc1a8bd76b06b53a892
042 |a dc 
100 1 0 |a M Adelita Vizcaino  |e author 
700 1 0 |a Aditya Raghunathan  |e author 
245 0 0 |a Evaluating neurosurgical biopsies for CNS tumor diagnoses: An algorithmic and pattern based approach 
260 |b Wolters Kluwer Medknow Publications,   |c 2022-01-01T00:00:00Z. 
500 |a 0377-4929 
500 |a 10.4103/ijpm.ijpm_1081_21 
520 |a The 2016 and 2021 World Health Organization (WHO) Classifications of Tumors of the Central Nervous System (CNS) reflect the importance of integrating molecular analysis into CNS tumor diagnosis and classification, adding to the complexity of any surgical neuropathology practice. On the other hand, our evolving understanding of genomic alterations across the spectrum of CNS tumors highlights the importance of utilizing traditional histological and immunohistochemical approaches to first establish as accurate a diagnosis as possible. Such an approach is also essential to recognizing the most appropriate ancillary test(s) needed for accurate classification and grading of CNS tumors. Here, we present an algorithmic approach to be considered while evaluating surgical neuropathology biopsies, which includes a recognition of main histological patterns, and incorporates clinical and radiologic features, to assist with accurate diagnosis and optimal selection of subsequent ancillary testing. 
546 |a EN 
690 |a algorithm 
690 |a cns tumors 
690 |a pattern-based 
690 |a Pathology 
690 |a RB1-214 
690 |a Microbiology 
690 |a QR1-502 
655 7 |a article  |2 local 
786 0 |n Indian Journal of Pathology and Microbiology, Vol 65, Iss 5, Pp 99-110 (2022) 
787 0 |n http://www.ijpmonline.org/article.asp?issn=0377-4929;year=2022;volume=65;issue=5;spage=99;epage=110;aulast=Vizcaino 
787 0 |n https://doaj.org/toc/0377-4929 
856 4 1 |u https://doaj.org/article/8edb9a2ca4e34cc1a8bd76b06b53a892  |z Connect to this object online.