Development and Evaluation of a Novel-Thymol@Natural-Zeolite/Low-Density-Polyethylene Active Packaging Film: Applications for Pork Fillets Preservation
Sustainability, the circular economy, and the "greenhouse" effect have led the food packaging industry to use naturally available bio-compounds. The integration of such compounds in packaging films increases food safety and extends food shelf-life. The development of an active/antioxidant...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Book |
Published: |
MDPI AG,
2023-02-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sustainability, the circular economy, and the "greenhouse" effect have led the food packaging industry to use naturally available bio-compounds. The integration of such compounds in packaging films increases food safety and extends food shelf-life. The development of an active/antioxidant packaging film based on the widely commercially used low-density polyethylene, natural zeolite, and Thymol, a natural extract from thyme oil, is presented in this work. The obtained active films were characterized using X-Ray Diffraction, Fourier-Transform Infrared Spectroscopy, Scanning Electron Microscopy, and Differential Scanning Calorimetry techniques. The tensile strength, water-oxygen barrier properties, and total antioxidant activity were measured. Low-density polyethylene incorporated with Thymol@Natural Zeolite at a proportion of 15 wt% was the most promising material and was used as film to wrap-up pork fillets. The thiobarbituric acid (TBA) method and heme iron measurements indicated a delayed lipids oxidation using this film. A linear correlation between the TBA method and heme iron values seems to be established, which could result in a fast method to determine the degree of lipid oxidation in pork fillets. Finally, a two-stage diffusion process during Thymol release was observed, and the values of the diffusion coefficient was 2.09 × 10<sup>−7</sup> and 1.21 × 10<sup>−8</sup> cm<sup>2</sup>/s for each stage. The applied pseudo-second sorption model provided a rate constant k<sub>2</sub> = 0.01647 (s<sup>−1</sup>). These results indicate the strong potential of such films to be used as food packaging materials free of E-number preservatives. |
---|---|
Item Description: | 10.3390/antiox12020523 2076-3921 |