Development of QCT loaded TPGS coated solid lipid nanoparticles for improved in vivo neuroprotective activity in LPS administered adult zebrafish model: A QbD-based approach

This work contains the development of QCT-loaded TPGS-coated SLNs by QbD to enhance neuroinflammation potential. Developed SLNs were in the nanometer range (263±3.62 nm) with desired parameters i.e., PDI (0.244±0.003), zeta potential (28.2 ± 0.74 mV), and%EE (74.3 ± 2.45 %) respectively. The release...

Full description

Saved in:
Bibliographic Details
Main Authors: Galal Mohsen Hussein Al-sayadi (Author), Gurisha Garg (Author), Arti Singh (Author), Preeti Patel (Author), Ghanshyam Das Gupta (Author), Balak Das Kurmi (Author)
Format: Book
Published: Elsevier, 2024-05-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work contains the development of QCT-loaded TPGS-coated SLNs by QbD to enhance neuroinflammation potential. Developed SLNs were in the nanometer range (263±3.62 nm) with desired parameters i.e., PDI (0.244±0.003), zeta potential (28.2 ± 0.74 mV), and%EE (74.3 ± 2.45 %) respectively. The release study showed sustained drug release of the developed formulation T-QCT-SLN (83.2 % release in 48 h). The study found QCT can reduce oxidative stress and neuroinflammation in adult zebrafish. Results showed reduced disruption in neuronal cells, decreased TNF-α and IL-1β levels, and reduced LPO, nitrite, and AChEs levels while increasing GSH levels, indicating its potential for treating oxidative stress and neuroinflammation. It can be concluded that QCT-loaded TPGS-coated SLN effectively prevents oxidative damage and neuroinflammation in adult zebrafish exposed to LPS compared to the QCT alone. The suggested work will be a focal paradigm for neuroinflammatory drug delivery.
Item Description:2352-9520
10.1016/j.onano.2024.100206