The Human 2-Cys Peroxiredoxins form Widespread, Cysteine-Dependent- and Isoform-Specific Protein-Protein Interactions

Redox signaling is controlled by the reversible oxidation of cysteine thiols, a post-translational modification triggered by H<sub>2</sub>O<sub>2</sub> acting as a second messenger. However, H<sub>2</sub>O<sub>2</sub> actually reacts poorly with most c...

Full description

Saved in:
Bibliographic Details
Main Authors: Loes van Dam (Author), Marc Pagès-Gallego (Author), Paulien E. Polderman (Author), Robert M. van Es (Author), Boudewijn M. T. Burgering (Author), Harmjan R. Vos (Author), Tobias B. Dansen (Author)
Format: Book
Published: MDPI AG, 2021-04-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Redox signaling is controlled by the reversible oxidation of cysteine thiols, a post-translational modification triggered by H<sub>2</sub>O<sub>2</sub> acting as a second messenger. However, H<sub>2</sub>O<sub>2</sub> actually reacts poorly with most cysteine thiols and it is not clear how H<sub>2</sub>O<sub>2</sub> discriminates between cysteines to trigger appropriate signaling cascades in the presence of dedicated H<sub>2</sub>O<sub>2</sub> scavengers like peroxiredoxins (PRDXs). It was recently suggested that peroxiredoxins act as peroxidases and facilitate H<sub>2</sub>O<sub>2</sub>-dependent oxidation of redox-regulated proteins via disulfide exchange reactions. It is unknown how the peroxiredoxin-based relay model achieves the selective substrate targeting required for adequate cellular signaling. Using a systematic mass-spectrometry-based approach to identify cysteine-dependent interactors of the five human 2-Cys peroxiredoxins, we show that all five human 2-Cys peroxiredoxins can form disulfide-dependent heterodimers with a large set of proteins. Each isoform displays a preference for a subset of disulfide-dependent binding partners, and we explore isoform-specific properties that might underlie this preference. We provide evidence that peroxiredoxin-based redox relays can proceed via two distinct molecular mechanisms. Altogether, our results support the theory that peroxiredoxins could play a role in providing not only reactivity but also selectivity in the transduction of peroxide signals to generate complex cellular signaling responses.
Item Description:10.3390/antiox10040627
2076-3921