A humanized knockin mouse model of Duchenne muscular dystrophy and its correction by CRISPR-Cas9 therapeutic gene editing

Duchenne muscular dystrophy (DMD) is a lethal neuromuscular disease caused by mutations in the X-linked dystrophin (DMD) gene. Exon deletions flanking exon 51, which disrupt the dystrophin open reading frame (ORF), represent one of the most common types of human DMD mutations. Previously, we used cl...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu Zhang (Author), Hui Li (Author), Takahiko Nishiyama (Author), John R. McAnally (Author), Efrain Sanchez-Ortiz (Author), Jian Huang (Author), Pradeep P.A. Mammen (Author), Rhonda Bassel-Duby (Author), Eric N. Olson (Author)
Format: Book
Published: Elsevier, 2022-09-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_8f85bc1de0294f5dae39c44e2af2513a
042 |a dc 
100 1 0 |a Yu Zhang  |e author 
700 1 0 |a Hui Li  |e author 
700 1 0 |a Takahiko Nishiyama  |e author 
700 1 0 |a John R. McAnally  |e author 
700 1 0 |a Efrain Sanchez-Ortiz  |e author 
700 1 0 |a Jian Huang  |e author 
700 1 0 |a Pradeep P.A. Mammen  |e author 
700 1 0 |a Rhonda Bassel-Duby  |e author 
700 1 0 |a Eric N. Olson  |e author 
245 0 0 |a A humanized knockin mouse model of Duchenne muscular dystrophy and its correction by CRISPR-Cas9 therapeutic gene editing 
260 |b Elsevier,   |c 2022-09-01T00:00:00Z. 
500 |a 2162-2531 
500 |a 10.1016/j.omtn.2022.07.024 
520 |a Duchenne muscular dystrophy (DMD) is a lethal neuromuscular disease caused by mutations in the X-linked dystrophin (DMD) gene. Exon deletions flanking exon 51, which disrupt the dystrophin open reading frame (ORF), represent one of the most common types of human DMD mutations. Previously, we used clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) gene editing to restore the reading frame of exon 51 in mice and dogs with exon 50 deletions. Due to genomic sequence variations between species, the single guide RNAs (sgRNAs) used for DMD gene editing are often not conserved, impeding direct clinical translation of CRISPR-Cas therapeutic gene-editing strategies. To circumvent this potential obstacle, we generated a humanized DMD mouse model by replacing mouse exon 51 with human exon 51, followed by deletion of mouse exon 50, which disrupted the dystrophin ORF. Systemic CRISPR-Cas9 gene editing using an sgRNA that targets human exon 51 efficiently restored dystrophin expression and ameliorated pathologic hallmarks of DMD, including histopathology and grip strength in this mouse model. This unique DMD mouse model with the human genomic sequence allows in vivo assessment of clinically relevant gene editing strategies as well as other therapeutic approaches and represents a significant step toward therapeutic translation of CRISPR-Cas9 gene editing for correction of DMD. 
546 |a EN 
690 |a Duchenne muscular dystrophy 
690 |a CRISPR 
690 |a AAV 
690 |a gene editing 
690 |a humanized mouse model 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Molecular Therapy: Nucleic Acids, Vol 29, Iss , Pp 525-537 (2022) 
787 0 |n http://www.sciencedirect.com/science/article/pii/S2162253122001937 
787 0 |n https://doaj.org/toc/2162-2531 
856 4 1 |u https://doaj.org/article/8f85bc1de0294f5dae39c44e2af2513a  |z Connect to this object online.