Multimodal Gated Mixture of Experts Using Whole Slide Image and Flow Cytometry for Multiple Instance Learning Classification of Lymphoma

In this study, we present a deep-learning-based multimodal classification method for lymphoma diagnosis in digital pathology, which utilizes a whole slide image (WSI) as the primary image data and flow cytometry (FCM) data as auxiliary information. In pathological diagnosis of malignant lymphoma, FC...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Noriaki Hashimoto (Autor), Hiroyuki Hanada (Autor), Hiroaki Miyoshi (Autor), Miharu Nagaishi (Autor), Kensaku Sato (Autor), Hidekata Hontani (Autor), Koichi Ohshima (Autor), Ichiro Takeuchi (Autor)
Formato: Libro
Publicado: Elsevier, 2024-12-01T00:00:00Z.
Materias:
Acceso en línea:Connect to this object online.
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Internet

Connect to this object online.

3rd Floor Main Library

Detalle de Existencias desde 3rd Floor Main Library
Número de Clasificación: A1234.567
Copia 1 Disponible