Permeation-enhancing effects and mechanisms of O-acylterpineol on isosorbide dinitrate: mechanistic insights based on ATR-FTIR spectroscopy, molecular modeling, and CLSM images

The present study aimed to evaluate the penetration activity of O-acylterpineol derivatives both in vitro and in vivo, and to investigate the enhancing mechanism of O-acylterpineol derivatives which were synthesized by α-terpineol and fatty acid. The promoting activities on the isosorbide dinitrate...

Full description

Saved in:
Bibliographic Details
Main Authors: Yan Li (Author), Chunyan Wang (Author), Jian Wang (Author), Tianzhe Chu (Author), Linlin Zhao (Author), Ligang Zhao (Author)
Format: Book
Published: Taylor & Francis Group, 2019-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present study aimed to evaluate the penetration activity of O-acylterpineol derivatives both in vitro and in vivo, and to investigate the enhancing mechanism of O-acylterpineol derivatives which were synthesized by α-terpineol and fatty acid. The promoting activities on the isosorbide dinitrate patch were tested across full thickness rabbit skin both in vitro and in vivo. In order to elucidate the permeation mechanism, attenuated total reflection Fourier transform infrared spectroscopy, molecular modeling, and confocal laser scanning microscopy were introduced to investigate the regulation of enhancers in the skin permeability and biophysical properties. With in vitro cytotoxicity test and in vivo erythema model, the skin irritation of enhancers was also evaluated. Permeation studies showed 2-(4-methylcyclohex-3-en-l-yl) propan-2-yl tetradecanoate produced the obvious enhancement activity for ISDN both in vitro and in vivo from patches. These results were supported by ATR-FTIR, molecular modeling, and CLSM studies which revealed that O-acylterpineol could decrease the order of the alkyl chains in the skin lipids. Additionally, it was found that TER-C14 produced a relatively low skin irritation, compared with the TER which was assumed to be a safe compound. The present research suggested that some newly designed acylterpineol derivatives are shown to be suitable permeation enhancers for transdermal drug delivery, and the chain length of C14 seem to be safe and more favorable for the penetration of ISDN from DIA patches.
Item Description:1071-7544
1521-0464
10.1080/10717544.2018.1561764