A-Mode Ultrasound-Based Prediction of Transfemoral Amputee Prosthesis Walking Kinematics via an Artificial Neural Network

Lower-limb powered prostheses can provide users with volitional control of ambulation. To accomplish this goal, they require a sensing modality that reliably interprets user intention to move. Surface electromyography (EMG) has been previously proposed to measure muscle excitation and provide voliti...

Full description

Saved in:
Bibliographic Details
Main Authors: Joel Mendez (Author), Rosemarie Murray (Author), Lukas Gabert (Author), Nicholas P. Fey (Author), Honghai Liu (Author), Tommaso Lenzi (Author)
Format: Book
Published: IEEE, 2023-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lower-limb powered prostheses can provide users with volitional control of ambulation. To accomplish this goal, they require a sensing modality that reliably interprets user intention to move. Surface electromyography (EMG) has been previously proposed to measure muscle excitation and provide volitional control to upper- and lower-limb powered prosthesis users. Unfortunately, EMG suffers from a low signal to noise ratio and crosstalk between neighboring muscles, often limiting the performance of EMG-based controllers. Ultrasound has been shown to have better resolution and specificity than surface EMG. However, this technology has yet to be integrated into lower-limb prostheses. Here we show that A-mode ultrasound sensing can reliably predict the prosthesis walking kinematics of individuals with a transfemoral amputation. Ultrasound features from the residual limb of 9 transfemoral amputee subjects were recorded with A-mode ultrasound during walking with their passive prosthesis. The ultrasound features were mapped to joint kinematics through a regression neural network. Testing of the trained model against untrained kinematics show accurate predictions of knee position, knee velocity, ankle position, and ankle velocity, with a normalized RMSE of 9.0 ± 3.1%, 7.3 ± 1.6%, 8.3 ± 2.3%, and 10.0 ± 2.5% respectively. This ultrasound-based prediction suggests that A-mode ultrasound is a viable sensing technology for recognizing user intent. This study is the first necessary step towards implementation of volitional prosthesis controller based on A-mode ultrasound for individuals with transfemoral amputation.
Item Description:1558-0210
10.1109/TNSRE.2023.3248647