Extracellular Superoxide Dismutase Attenuates Hepatic Oxidative Stress in Nonalcoholic Fatty Liver Disease through the Adenosine Monophosphate-Activated Protein Kinase Activation
Oxidative stress is key in type 2 diabetes-associated nonalcoholic fatty liver disease (NAFLD). We explored whether extracellular superoxide dismutase (EC-SOD) activates adenosine monophosphate-activated protein kinase (AMPK) to enhance antioxidant synthesis and lipid metabolism in NAFLD. Human reco...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Book |
Published: |
MDPI AG,
2023-11-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Oxidative stress is key in type 2 diabetes-associated nonalcoholic fatty liver disease (NAFLD). We explored whether extracellular superoxide dismutase (EC-SOD) activates adenosine monophosphate-activated protein kinase (AMPK) to enhance antioxidant synthesis and lipid metabolism in NAFLD. Human recombinant EC-SOD (hEC-SOD) was administered to 8-week-old male C57BLKS/J <i>db</i>/<i>db</i> mice through intraperitoneal injection once a week for 8 weeks. Target molecules involved in oxidative stress and lipid metabolism were investigated. hEC-SOD improved insulin resistance and systemic and hepatic oxidative stress characterized by increases in urinary 8-hydroxy-deoxyguanosine and 8-isoprostane levels in <i>db</i>/<i>db</i> mice and a decrease in DHE expression in the liver, respectively. Hepatic SOD3 expression in <i>db</i>/<i>db</i> mice was reversed by hEC-SOD, which improved hepatic steatosis, inflammation with M2 polarization, apoptosis, autophagy, fibrosis and lipid metabolism in <i>db</i>/<i>db</i> mice, as reflected by the changes in serum and hepatic markers, monocyte chemoattractant protein-1, tumor necrosis factor-α, TUNEL-positive cells, Bcl-2/BAX ratio, beclin1 and LC3-II/LC3-1. At the molecular level, hEC-SOD increased phosphorylated-AMPK related to CaMKKß, activation of peroxisome proliferative-activated receptor-gamma coactivator (PGC)-1α and dephosphorylation of forkhead box O (FoxO)1 and their subsequent downstream signaling. In HepG2Cs cells using <i>AMPKα1</i> and <i>AMPKα2</i> siRNA, hEC-SOD demonstrated a protective effect via the direct activation of both AMPK-PGC-1α and AMPK-FoxO1. EC-SOD might be a potential therapeutic agent for NAFLD through the activation of AMPK-PGC-1α and AMPK-FoxO1 signaling in hepatocytes, which modulates lipid metabolism, leading to anti-inflammatory, antioxidative and antiapoptotic effects and improving autophagy in the liver. |
---|---|
Item Description: | 10.3390/antiox12122040 2076-3921 |