A Sensitive Assay for Unbound Docetaxel Using Ultrafiltration plus HPLC-MS and Its Application to a Clinical Study

Introduction: Docetaxel, a taxane used in the treatment of solid tumours, exerts pharmacological activity when in its unbound form. We report a sensitive assay to quantify unbound docetaxel after oral administration of docetaxel plus encequidar (oDox+E). Unbound drug quantification is important due...

Full description

Saved in:
Bibliographic Details
Main Authors: David Wang (Author), Natalie Hughes-Medlicott (Author), Lilian Klingler (Author), Yi Wang (Author), Noelyn Hung (Author), Stephen Duffull (Author), Tak Hung (Author), Paul Glue (Author), Albert Qin (Author), Rudolf Kwan (Author), Wing-Kai Chan (Author), Christopher Jackson (Author)
Format: Book
Published: MDPI AG, 2024-04-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Introduction: Docetaxel, a taxane used in the treatment of solid tumours, exerts pharmacological activity when in its unbound form. We report a sensitive assay to quantify unbound docetaxel after oral administration of docetaxel plus encequidar (oDox+E). Unbound drug quantification is important due to its direct correlation with drug-related toxicity and therapeutic efficacy. We improve on the sensitivity of current assay methods and demonstrate the utility of the assay on a novel formulation of oral docetaxel. Methods: Ultrafiltration followed by high-performance liquid chromatography and tandem mass spectrometry (HPLC-MS/MS) was utilized. Long-term stability, precision, accuracy, and recovery experiments were conducted to validate the assay. Additionally, patient samples from a Phase I dose-escalation pharmacokinetic study were analyzed using the developed assay. Results: The assay method exhibited long-term stability with an observed change between 0.8 and 6.9% after 131 days of storage at −60 °C. Precision and accuracy quality controls met the FDA acceptance criteria. An average recovery of 88% was obtained. Patient sample analysis demonstrated successful implementation of the assay. Conclusion: A validated sensitive assay was developed with an LLOQ of 0.084 ng/mL using 485 µL of human plasma. The sensitivity of the assay allowed quantification of unbound docetaxel concentrations in an early-phase oDox+E clinical study to compare it against IV docetaxel using pharmacokinetic modelling. Successful development of oDox+E represents an opportunity to replace the current IV docetaxel regimen with an oral regimen with lower cost, decreased side effects, and improve patient quality of life and experience.
Item Description:10.3390/pharmaceutics16050602
1999-4923