20(S)-Protopanaxatriol promotes the binding of P53 and DNA to regulate the antitumor network via multiomic analysis
Although the tumor suppressor P53 is known to regulate a broad network of signaling pathways, it is still unclear how certain drugs influence these P53 signaling networks. Here, we used a comprehensive single-cell multiomics view of the effects of ginsenosides on cancer cells. Transcriptome and prot...
Saved in:
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Book |
Published: |
Elsevier,
2020-06-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Although the tumor suppressor P53 is known to regulate a broad network of signaling pathways, it is still unclear how certain drugs influence these P53 signaling networks. Here, we used a comprehensive single-cell multiomics view of the effects of ginsenosides on cancer cells. Transcriptome and proteome profiling revealed that the antitumor activity of ginsenosides is closely associated with P53 protein. A miRNA-proteome interaction network revealed that P53 controlled the transcription of at least 38 proteins, and proteome-metabolome profiling analysis revealed that P53 regulated proteins involved in nucleotide metabolism, amino acid metabolism and "Warburg effect". The results of integrative multiomics analysis revealed P53 protein as a potential key target that influences the anti-tumor activity of ginsenosides. Furthermore, by applying affinity mass spectrometry (MS) screening and surface plasmon resonance fragment library screening, we confirmed that 20(S)-protopanaxatriol directly targeted adjacent regions of the P53 DNA-binding pocket and promoted the stability of P53-DNA interactions, which further induced a series of omics changes. |
---|---|
Item Description: | 2211-3835 10.1016/j.apsb.2020.01.017 |