Reduction of therapeutic antibody self-association using yeast-display selections and machine learning

Self-association governs the viscosity and solubility of therapeutic antibodies in high-concentration formulations used for subcutaneous delivery, yet it is difficult to reliably identify candidates with low self-association during antibody discovery and early-stage optimization. Here, we report a h...

詳細記述

保存先:
書誌詳細
主要な著者: Emily K. Makowski (著者), Hongwei Chen (著者), Matthew Lambert (著者), Eric M. Bennett (著者), Nicole S. Eschmann (著者), Yulei Zhang (著者), Jennifer M. Zupancic (著者), Alec A. Desai (著者), Matthew D. Smith (著者), Wenjia Lou (著者), Amendra Fernando (著者), Timothy Tully (著者), Christopher J. Gallo (著者), Laura Lin (著者), Peter M. Tessier (著者)
フォーマット: 図書
出版事項: Taylor & Francis Group, 2022-12-01T00:00:00Z.
主題:
オンライン・アクセス:Connect to this object online.
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

インターネット

Connect to this object online.

3rd Floor Main Library

予約・返却請求 3rd Floor Main Library
請求記号: A1234.567
所蔵 1 利用可