Genomic insights into the evolution and mechanisms of carbapenem-resistant hypervirulent Klebsiella pneumoniae co-harboring bla KPC and bla NDM: implications for public health threat mitigation

Abstract Background Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) co-producing bla KPC and bla NDM poses a serious threat to public health. This study aimed to investigate the mechanisms underlying the resistance and virulence of CR-hvKP isolates collected from a Chinese hospita...

Full description

Saved in:
Bibliographic Details
Main Authors: Qian Wang (Author), Yue Liu (Author), Ran Chen (Author), Meng Zhang (Author), Zaifeng Si (Author), Yueling Wang (Author), Yan Jin (Author), Yuanyuan Bai (Author), Zhen Song (Author), Xinglun Lu (Author), Mingju Hao (Author), Yingying Hao (Author)
Format: Book
Published: BMC, 2024-03-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) co-producing bla KPC and bla NDM poses a serious threat to public health. This study aimed to investigate the mechanisms underlying the resistance and virulence of CR-hvKP isolates collected from a Chinese hospital, with a focus on bla KPC and bla NDM dual-positive hvKP strains. Methods Five CR-hvKP strains were isolated from a teaching hospital in China. Antimicrobial susceptibility and plasmid stability testing, plasmid conjugation, pulsed-field gel electrophoresis, and whole-genome sequencing (WGS) were performed to examine the mechanisms of resistance and virulence. The virulence of CR-hvKP was evaluated through serum-killing assay and Galleria mellonella lethality experiments. Phylogenetic analysis based on 16 highly homologous carbapenem-resistant K. pneumoniae (CRKP) producing KPC-2 isolates from the same hospital was conducted to elucidate the potential evolutionary pathway of CRKP co-producing NDM and KPC. Results WGS revealed that five isolates individually carried three unique plasmids: an IncFIB/IncHI1B-type virulence plasmid, IncFII/IncR-type plasmid harboring KPC-2 and IncC-type plasmid harboring NDM-1. The conjugation test results indicated that the transference of KPC-2 harboring IncFII/IncR-type plasmid was unsuccessful on their own, but could be transferred by forming a hybrid plasmid with the IncC plasmid harboring NDM. Further genetic analysis confirmed that the pJNKPN26-KPC plasmid was entirely integrated into the IncC-type plasmid via the copy-in route, which was mediated by TnAs1 and IS26. Conclusion KPC-NDM-CR-hvKP likely evolved from a KPC-2-CRKP ancestor and later acquired a highly transferable bla NDM-1 plasmid. ST11-KL64 CRKP exhibited enhanced plasticity. The identification of KPC-2-NDM-1-CR-hvKP highlights the urgent need for effective preventive strategies against aggravated accumulation of resistance genes.
Item Description:10.1186/s12941-024-00686-3
1476-0711