Structural modeling of ion channels using AlphaFold2, RoseTTAFold2, and ESMFold

ABSTRACTIon channels play key roles in human physiology and are important targets in drug discovery. The atomic-scale structures of ion channels provide invaluable insights into a fundamental understanding of the molecular mechanisms of channel gating and modulation. Recent breakthroughs in deep lea...

Full description

Saved in:
Bibliographic Details
Main Authors: Phuong Tran Nguyen (Author), Brandon John Harris (Author), Diego Lopez Mateos (Author), Adriana Hernández González (Author), Adam Michael Murray (Author), Vladimir Yarov-Yarovoy (Author)
Format: Book
Published: Taylor & Francis Group, 2024-12-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_beab5ea70fd84c6f9e25b028bb4eafa2
042 |a dc 
100 1 0 |a Phuong Tran Nguyen  |e author 
700 1 0 |a Brandon John Harris  |e author 
700 1 0 |a Diego Lopez Mateos  |e author 
700 1 0 |a Adriana Hernández González  |e author 
700 1 0 |a Adam Michael Murray  |e author 
700 1 0 |a Vladimir Yarov-Yarovoy  |e author 
245 0 0 |a Structural modeling of ion channels using AlphaFold2, RoseTTAFold2, and ESMFold 
260 |b Taylor & Francis Group,   |c 2024-12-01T00:00:00Z. 
500 |a 10.1080/19336950.2024.2325032 
500 |a 1933-6969 
500 |a 1933-6950 
520 |a ABSTRACTIon channels play key roles in human physiology and are important targets in drug discovery. The atomic-scale structures of ion channels provide invaluable insights into a fundamental understanding of the molecular mechanisms of channel gating and modulation. Recent breakthroughs in deep learning-based computational methods, such as AlphaFold, RoseTTAFold, and ESMFold have transformed research in protein structure prediction and design. We review the application of AlphaFold, RoseTTAFold, and ESMFold to structural modeling of ion channels using representative voltage-gated ion channels, including human voltage-gated sodium (NaV) channel - NaV1.8, human voltage-gated calcium (CaV) channel - CaV1.1, and human voltage-gated potassium (KV) channel - KV1.3. We compared AlphaFold, RoseTTAFold, and ESMFold structural models of NaV1.8, CaV1.1, and KV1.3 with corresponding cryo-EM structures to assess details of their similarities and differences. Our findings shed light on the strengths and limitations of the current state-of-the-art deep learning-based computational methods for modeling ion channel structures, offering valuable insights to guide their future applications for ion channel research. 
546 |a EN 
690 |a Structural modeling 
690 |a voltage-gated sodium channels 
690 |a voltage-gated calcium channels 
690 |a voltage-gated potassium chnanels 
690 |a AlphaFold 
690 |a RoseTTAFold 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
690 |a Physiology 
690 |a QP1-981 
655 7 |a article  |2 local 
786 0 |n Channels, Vol 18, Iss 1 (2024) 
787 0 |n https://www.tandfonline.com/doi/10.1080/19336950.2024.2325032 
787 0 |n https://doaj.org/toc/1933-6950 
787 0 |n https://doaj.org/toc/1933-6969 
856 4 1 |u https://doaj.org/article/beab5ea70fd84c6f9e25b028bb4eafa2  |z Connect to this object online.