V2ACHER: Visualization of complex trial data in pharmacometric analyses with covariates

Abstract Pharmacometric models can enhance clinical decision making, with covariates exposing potential contributions to variability of subpopulation characteristics, for example, demographics or disease status. Intuitive visualization of models with multiple covariates is needed because sparsity of...

Full description

Saved in:
Bibliographic Details
Main Authors: Jos Lommerse (Author), Nele Plock (Author), S. Y. Amy Cheung (Author), Jeffrey R. Sachs (Author)
Format: Book
Published: Wiley, 2021-09-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_c21fd9582c8f4d6bb77d5556f2d45d1d
042 |a dc 
100 1 0 |a Jos Lommerse  |e author 
700 1 0 |a Nele Plock  |e author 
700 1 0 |a S. Y. Amy Cheung  |e author 
700 1 0 |a Jeffrey R. Sachs  |e author 
245 0 0 |a V2ACHER: Visualization of complex trial data in pharmacometric analyses with covariates 
260 |b Wiley,   |c 2021-09-01T00:00:00Z. 
500 |a 2163-8306 
500 |a 10.1002/psp4.12679 
520 |a Abstract Pharmacometric models can enhance clinical decision making, with covariates exposing potential contributions to variability of subpopulation characteristics, for example, demographics or disease status. Intuitive visualization of models with multiple covariates is needed because sparsity of data in visualizations trellised by covariate values can raise concerns about the credibility of the underlying model. V2ACHER, introduced here, is a stepwise transformation of data that can be applied to a variety of static (non‐ordinary‐differential‐equation‐based) pharmacometric analyses. This work uses four examples of increasing complexity to show how the transformation elucidates the relationship between observations and model results and how it can also be used in visual predictive checks to confirm the quality of a model. V2ACHER facilitates consistent, intuitive, single‐plot visualization of a multicovariate model with a complex data set, thereby enabling easier model communication for modelers and for cross‐functional development teams and facilitating confident use in support of decisions. 
546 |a EN 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n CPT: Pharmacometrics & Systems Pharmacology, Vol 10, Iss 9, Pp 1092-1106 (2021) 
787 0 |n https://doi.org/10.1002/psp4.12679 
787 0 |n https://doaj.org/toc/2163-8306 
856 4 1 |u https://doaj.org/article/c21fd9582c8f4d6bb77d5556f2d45d1d  |z Connect to this object online.