Evaluation of Drug Blood-Brain-Barrier Permeability Using a Microfluidic Chip
The blood-brain-barrier (BBB) is made up of blood vessels whose permeability enables the passage of some compounds. A predictive model of BBB permeability is important in the early stages of drug development. The predicted BBB permeabilities of drugs have been confirmed using a variety of in vitro m...
Saved in:
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Book |
Published: |
MDPI AG,
2024-04-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The blood-brain-barrier (BBB) is made up of blood vessels whose permeability enables the passage of some compounds. A predictive model of BBB permeability is important in the early stages of drug development. The predicted BBB permeabilities of drugs have been confirmed using a variety of in vitro methods to reduce the quantities of drug candidates needed in preclinical and clinical trials. Most prior studies have relied on animal or cell-culture models, which do not fully recapitulate the human BBB. The development of microfluidic models of human-derived BBB cells could address this issue. We analyzed a model for predicting BBB permeability using the Emulate BBB-on-a-chip machine. Ten compounds were evaluated, and their permeabilities were estimated. Our study demonstrated that the permeability trends of ten compounds in our microfluidic-based system resembled those observed in previous animal and cell-based experiments. Furthermore, we established a general correlation between the partition coefficient (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></semantics></math></inline-formula>) and the apparent permeability (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>a</mi><mi>p</mi><mi>p</mi></mrow></msub></mrow></semantics></math></inline-formula>). In conclusion, we introduced a new paradigm for predicting BBB permeability using microfluidic-based systems. |
---|---|
Item Description: | 10.3390/pharmaceutics16050574 1999-4923 |