Ginsenoside Compound K Attenuates Ox-LDL-Mediated Macrophage Inflammation and Foam Cell Formation via Autophagy Induction and Modulating NF-κB, p38, and JNK MAPK Signaling

Atherosclerosis is a major reason for the high morbidity and mortality of cardiovascular diseases. Macrophage inflammation and foam cell formation are the key pathological processes of atherosclerosis. Ginsenoside compound K (CK) is a metabolite derived from ginseng. CK has anti atherosclerotic effe...

Full description

Saved in:
Bibliographic Details
Main Authors: Shan Lu (Author), Yun Luo (Author), GuiBo Sun (Author), XiaoBo Sun (Author)
Format: Book
Published: Frontiers Media S.A., 2020-09-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Atherosclerosis is a major reason for the high morbidity and mortality of cardiovascular diseases. Macrophage inflammation and foam cell formation are the key pathological processes of atherosclerosis. Ginsenoside compound K (CK) is a metabolite derived from ginseng. CK has anti atherosclerotic effect, but the molecular mechanism remains to be elucidated. We aim to explore the protective effect of CK against ox-LDL-induced inflammatory responses and foam cells formation in vitro and explore its potential mechanisms. Through the results of oil red O staining, Western blot, and qPCR, we found that CK significantly inhibited the foam cell formation, reduced the expression of SR-A1 and increased ABCA1 and ABCG1 expression. In addition, CK increased the number of autophagosomes and upregulated the LC3II/LC3I ratio and the expressions of ATG5 and Beclin-1 but decreased p62 expression. Moreover, CK significantly inhibited the NF-κB, p38, and JNK MAPK signaling pathway. Altogether, CK attenuated macrophage inflammation and foam cell formation via autophagy induction and by modulating NF-κB, p38, and JNK MAPK signaling. Thus, CK has potential as a therapeutic drug for atherosclerosis.
Item Description:1663-9812
10.3389/fphar.2020.567238