Jumping Knowledge Based Spatial-Temporal Graph Convolutional Networks for Automatic Sleep Stage Classification

A novel jumping knowledge spatial-temporal graph convolutional network (JK-STGCN) is proposed in this paper to classify sleep stages. Based on this method, different types of multi-channel bio-signals, including electroencephalography (EEG), electromyogram (EMG), electrooculogram (EOG), and electroc...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaopeng Ji (Author), Yan Li (Author), Peng Wen (Author)
Format: Book
Published: IEEE, 2022-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

Internet

Connect to this object online.

3rd Floor Main Library

Holdings details from 3rd Floor Main Library
Call Number: A1234.567
Copy 1 Available