Increased tumour burden alters skeletal muscle properties in the KPC mouse model of pancreatic cancer

Abstract Background Cancer cachexia is a multifactorial wasting syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia have recapitulat...

Full description

Saved in:
Bibliographic Details
Main Authors: Ravneet Vohra (Author), Matthew D. Campbell (Author), Joshua Park (Author), Stella Whang (Author), Kayla Gravelle (Author), Yak‐Nam Wang (Author), Joo‐Ha Hwang (Author), David J. Marcinek (Author), Donghoon Lee (Author)
Format: Book
Published: Wiley, 2020-07-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_ca4c67d7407b4e39b99bf4e48a622a07
042 |a dc 
100 1 0 |a Ravneet Vohra  |e author 
700 1 0 |a Matthew D. Campbell  |e author 
700 1 0 |a Joshua Park  |e author 
700 1 0 |a Stella Whang  |e author 
700 1 0 |a Kayla Gravelle  |e author 
700 1 0 |a Yak‐Nam Wang  |e author 
700 1 0 |a Joo‐Ha Hwang  |e author 
700 1 0 |a David J. Marcinek  |e author 
700 1 0 |a Donghoon Lee  |e author 
245 0 0 |a Increased tumour burden alters skeletal muscle properties in the KPC mouse model of pancreatic cancer 
260 |b Wiley,   |c 2020-07-01T00:00:00Z. 
500 |a 2617-1619 
500 |a 10.1002/rco2.13 
520 |a Abstract Background Cancer cachexia is a multifactorial wasting syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia have recapitulated this skeletal muscle atrophy and consequent decline in muscle force‐generating capacity. We address these issues in a novel transgenic mouse model Kras, Trp53, and Pdx‐1‐Cre (KPC) of pancreatic ductal adenocarcinoma using multi‐parametric magnetic resonance measures. Methods KPC mice (n = 10) were divided equally into two groups (n = 5 per group) depending on the size of the tumour, that is, tumour size <250 and >250 mm3. Using multi‐parametric magnetic resonance measures, we demonstrated the changes in the gastrocnemius muscle at the microstructural level. In addition, we evaluated skeletal muscle contractile function in KPC mice using an in vivo approach. Results Increase in tumour size resulted in decrease in gastrocnemius maximum cross‐sectional area, decrease in T2 relaxation time, increase in magnetization transfer ratio, decrease in mean diffusivity, and decrease in radial diffusivity of water across the muscle fibres. Finally, we detected significant decrease in absolute and specific force production of gastrocnemius muscle with increase in tumour size. Conclusions Our findings indicate that increase in tumour size may cause alterations in structural and functional parameters of skeletal muscles and that MR parameters may be used as sensitive biomarkers to non‐invasively detect structural changes in cachectic muscles. 
546 |a EN 
690 |a Cachexia 
690 |a Magnetic resonance imaging (MRI) 
690 |a Transverse relaxation time (T2) 
690 |a Magnetization transfer ratio (MTR) 
690 |a Diffusion tensor imaging (DTI) 
690 |a Internal medicine 
690 |a RC31-1245 
655 7 |a article  |2 local 
786 0 |n JCSM Rapid Communications, Vol 3, Iss 2, Pp 44-55 (2020) 
787 0 |n https://doi.org/10.1002/rco2.13 
787 0 |n https://doaj.org/toc/2617-1619 
856 4 1 |u https://doaj.org/article/ca4c67d7407b4e39b99bf4e48a622a07  |z Connect to this object online.