Privacy-preserving semi-parallel logistic regression training with fully homomorphic encryption

Abstract Background Privacy-preserving computations on genomic data, and more generally on medical data, is a critical path technology for innovative, life-saving research to positively and equally impact the global population. It enables medical research algorithms to be securely deployed in the cl...

Cijeli opis

Spremljeno u:
Bibliografski detalji
Glavni autori: Sergiu Carpov (Autor), Nicolas Gama (Autor), Mariya Georgieva (Autor), Juan Ramon Troncoso-Pastoriza (Autor)
Format: Knjiga
Izdano: BMC, 2020-07-01T00:00:00Z.
Teme:
Online pristup:Connect to this object online.
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

Internet

Connect to this object online.

3rd Floor Main Library

Detalji primjeraka od 3rd Floor Main Library
Signatura: A1234.567
Primjerak 1 Dostupno