Molecular characterization of a carbon dioxide-dependent Escherichia coli small-colony variant isolated from blood cultures

A carbon dioxide-dependent small-colony variant of Escherichia coli SH4888 was isolated from blood cultures of a patient with cholangitis. To date, little is known regarding the molecular mechanisms leading to formation of carbon dioxide-dependent phenotypes in clinical isolates, but abnormalities i...

Full description

Saved in:
Bibliographic Details
Main Authors: Takehisa Matsumoto (Author), Masayuki Hashimoto (Author), Ching-Hao Teng (Author), Po-Chuen Hsu (Author), Yusuke Ota (Author), Masaru Takamizawa (Author), Ryosuke Kato (Author), Tatsuya Negishi (Author)
Format: Book
Published: Elsevier, 2020-07-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A carbon dioxide-dependent small-colony variant of Escherichia coli SH4888 was isolated from blood cultures of a patient with cholangitis. To date, little is known regarding the molecular mechanisms leading to formation of carbon dioxide-dependent phenotypes in clinical isolates, but abnormalities in the carbonic anhydrase are thought to cause carbon dioxide autotrophy. In this study DNA sequence analysis of the carbonic anhydrase-encoding can locus in the carbon dioxide-dependent E. coli SH4888 revealed that the isolate had a 325-bp deletion spanning from the 3'-terminal region of can to the 3'-terminal region of hpt, which encodes a hypoxanthine phosphoribosyltransferase. To confirm that the carbon dioxide-dependent SCV phenotype of E. coli SH4888 was due to the can mutation, we performed a complementation test with a plasmid carrying an intact can that restored the normal phenotype. However, E. coli SH4888 had increased virulence compared to the can-complemented E. coli SH4888 in a murine infection model. In conclusion, these data confirm that impaired carbonic anhydrase function can cause a carbon dioxide-dependent SCV phenotype in E. coli SH4888 and provides a fitness advantage in terms of infection.
Item Description:1438-4221
10.1016/j.ijmm.2020.151431