Multi-Scale Masked Autoencoders for Cross-Session Emotion Recognition

Affective brain-computer interfaces (aBCIs) have garnered widespread applications, with remarkable advancements in utilizing electroencephalogram (EEG) technology for emotion recognition. However, the time-consuming process of annotating EEG data, inherent individual differences, non-stationary char...

Full description

Saved in:
Bibliographic Details
Main Authors: Miaoqi Pang (Author), Hongtao Wang (Author), Jiayang Huang (Author), Chi-Man Vong (Author), Zhiqiang Zeng (Author), Chuangquan Chen (Author)
Format: Book
Published: IEEE, 2024-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Affective brain-computer interfaces (aBCIs) have garnered widespread applications, with remarkable advancements in utilizing electroencephalogram (EEG) technology for emotion recognition. However, the time-consuming process of annotating EEG data, inherent individual differences, non-stationary characteristics of EEG data, and noise artifacts in EEG data collection pose formidable challenges in developing subject-specific cross-session emotion recognition models. To simultaneously address these challenges, we propose a unified pre-training framework based on multi-scale masked autoencoders (MSMAE), which utilizes large-scale unlabeled EEG signals from multiple subjects and sessions to extract noise-robust, subject-invariant, and temporal-invariant features. We subsequently fine-tune the obtained generalized features with only a small amount of labeled data from a specific subject for personalization and enable cross-session emotion recognition. Our framework emphasizes: 1) multi-scale representation to capture diverse aspects of EEG signals, obtaining comprehensive information; 2) an improved masking mechanism for robust channel-level representation learning, addressing missing channel issues while preserving inter-channel relationships; and 3) invariance learning for regional correlations in spatial-level representation, minimizing inter-subject and inter-session variances. Under these elaborate designs, the proposed MSMAE exhibits a remarkable ability to decode emotional states from a different session of EEG data during the testing phase. Extensive experiments conducted on the two publicly available datasets, i.e., SEED and SEED-IV, demonstrate that the proposed MSMAE consistently achieves stable results and outperforms competitive baseline methods in cross-session emotion recognition.
Item Description:1534-4320
1558-0210
10.1109/TNSRE.2024.3389037