Targeting the gram-negative bacteria peptidoglycan synthase MraY as a new approach for monoclonal antibody anti-bacterial activity

The use of antibiotics to target bacteria is a well-validated approach for controlling infections in animals and humans. Peptidoglycan biosynthesis is a crucial process in bacteria, and the conserved peptidoglycan synthase MraY is an attractive target for drug design. However, due to the lack of det...

Full description

Saved in:
Bibliographic Details
Main Authors: Jun Cao (Author), Fei Yi (Author), Qiufeng Tian (Author), Guanghui Dang (Author), Wei Si (Author), Siguo Liu (Author), Shenye Yu (Author)
Format: Book
Published: Taylor & Francis Group, 2017-09-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The use of antibiotics to target bacteria is a well-validated approach for controlling infections in animals and humans. Peptidoglycan biosynthesis is a crucial process in bacteria, and the conserved peptidoglycan synthase MraY is an attractive target for drug design. However, due to the lack of detailed MraY structural information, antibiotics targeting MraY have not yet been developed. In the present study, 2 hydrophilic regions of MraY from Escherichia coli were expressed as a fusion protein and used to raise a monoclonal antibody in mice. We confirmed that the MraY amino acid sequence PESHFSKRGTPT forms the core epitope recognized by the monoclonal antibody M-H11. Furthermore, our results show that M-H11 effectively controls Escherichia coli BL21 (DE3) plysS infection, both in vitro and in vivo. Our results may be of great value in the search for novel approaches used to control bacterial infections.
Item Description:2164-5515
2164-554X
10.1080/21645515.2017.1337613