Neuroprotective Effect of Ramipril Is Mediated by AT2 in a Mouse MODEL of Paclitaxel-Induced Peripheral Neuropathy

Paclitaxel (PTX)-induced peripheral neuropathy (PIPN) induces numerous symptoms affecting patient quality of life, leading to decreased doses or even to cessation of anticancer therapy. Previous studies have reported that a widely used drug, ramipril, improves neuroprotection in several rodent model...

Full description

Saved in:
Bibliographic Details
Main Authors: Hichem Bouchenaki (Author), Amandine Bernard (Author), Flavien Bessaguet (Author), Simon Frachet (Author), Laurence Richard (Author), Franck Sturtz (Author), Laurent Magy (Author), Sylvie Bourthoumieu (Author), Claire Demiot (Author), Aurore Danigo (Author)
Format: Book
Published: MDPI AG, 2022-04-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Paclitaxel (PTX)-induced peripheral neuropathy (PIPN) induces numerous symptoms affecting patient quality of life, leading to decreased doses or even to cessation of anticancer therapy. Previous studies have reported that a widely used drug, ramipril, improves neuroprotection in several rodent models of peripheral neuropathy. The protective role of the angiotensin II type 2 receptor (AT2) in the central and peripheral nervous systems is well-established. Here, we evaluate the effects of ramipril in the prevention of PIPN and the involvement of AT2 in this effect. Paclitaxel was administered in wild type or AT2-deficient mice on alternate days for 8 days, at a cumulative dose of 8 mg/kg (2 mg/kg per injection). Ramipril, PD123319 (an AT2 antagonist), or a combination of both were administered one day before PTX administration, and daily for the next twenty days. PTX-administered mice developed mechanical allodynia and showed a loss of sensory nerve fibers. Ramipril prevented the functional and morphological alterations in PTX mice. The preventive effect of ramipril against tactile allodynia was completely absent in AT2-deficient mice and was counteracted by PD123319 administration in wild type mice. Our work highlights the potential of ramipril as a novel preventive treatment for PIPN, and points to the involvement of AT2 in the neuroprotective role of ramipril in PIPN.
Item Description:10.3390/pharmaceutics14040848
1999-4923