RPEM: Randomized Monte Carlo parametric expectation maximization algorithm

Abstract Inspired from quantum Monte Carlo, by sampling discrete and continuous variables at the same time using the Metropolis-Hastings algorithm, we present a novel, fast, and accurate high performance Monte Carlo Parametric Expectation Maximization (MCPEM) algorithm. We named it Randomized Parame...

Повний опис

Збережено в:
Бібліографічні деталі
Автори: Rong Chen (Автор), Alan Schumitzky (Автор), Alona Kryshchenko (Автор), Keith Nieforth (Автор), Michael Tomashevskiy (Автор), Shuhua Hu (Автор), Romain Garreau (Автор), Julian Otalvaro (Автор), Walter Yamada (Автор), Michael N. Neely (Автор)
Формат: Книга
Опубліковано: Wiley, 2024-05-01T00:00:00Z.
Предмети:
Онлайн доступ:Connect to this object online.
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Опис
Резюме:Abstract Inspired from quantum Monte Carlo, by sampling discrete and continuous variables at the same time using the Metropolis-Hastings algorithm, we present a novel, fast, and accurate high performance Monte Carlo Parametric Expectation Maximization (MCPEM) algorithm. We named it Randomized Parametric Expectation Maximization (RPEM). We compared RPEM with NONMEM's Importance Sampling Method (IMP), Monolix's Stochastic Approximation Expectation Maximization (SAEM), and Certara's Quasi‐Random Parametric Expectation Maximization (QRPEM) for a realistic two‐compartment voriconazole model with ordinary differential equations using simulated data. We show that RPEM is as fast and as accurate as the algorithms IMP, QRPEM, and SAEM for the voriconazole model in reconstructing the population parameters, for the normal and log‐normal cases.
Опис примірника:2163-8306
10.1002/psp4.13113