Reduced insulin action in muscle of high fat diet rats over the diurnal cycle is not associated with defective insulin signaling
Objective: Energy metabolism and insulin action follow a diurnal rhythm. It is therefore important that investigations into dysregulation of these pathways are relevant to the physiology of this diurnal rhythm. Methods: We examined glucose uptake, markers of insulin action, and the phosphorylation o...
Saved in:
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Book |
Published: |
Elsevier,
2019-07-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Objective: Energy metabolism and insulin action follow a diurnal rhythm. It is therefore important that investigations into dysregulation of these pathways are relevant to the physiology of this diurnal rhythm. Methods: We examined glucose uptake, markers of insulin action, and the phosphorylation of insulin signaling intermediates in muscle of chow and high fat, high sucrose (HFHS) diet-fed rats over the normal diurnal cycle. Results: HFHS animals displayed hyperinsulinemia but had reduced systemic glucose disposal and lower muscle glucose uptake during the feeding period. Analysis of gene expression, enzyme activity, protein abundance and phosphorylation revealed a clear diurnal regulation of substrate oxidation pathways with no difference in Akt signaling in muscle. Transfection of a constitutively active Akt2 into the muscle of HFHS rats did not rescue diet-induced reductions in insulin-stimulated glucose uptake. Conclusions: These studies suggest that reduced glucose uptake in muscle during the diurnal cycle induced by short-term HFHS-feeding is not the result of reduced insulin signaling. Keywords: Insulin action, Glucose uptake, Skeletal muscle, Insulin signaling, Diurnal rhythms, Phosphoproteomics |
---|---|
Item Description: | 2212-8778 10.1016/j.molmet.2019.04.006 |