PCAT-1 facilitates breast cancer progression via binding to RACK1 and enhancing oxygen-independent stability of HIF-1α

Hypoxia induces a series of cellular adaptive responses that enable promotion of inflammation and cancer development. Hypoxia-inducible factor-1α (HIF-1α) is involved in the hypoxia response and cancer promotion, and it accumulates in hypoxia and is degraded under normoxic conditions. Here we identi...

Full description

Saved in:
Bibliographic Details
Main Authors: Jianlong Wang (Author), Xuyi Chen (Author), Haijuan Hu (Author), Mengting Yao (Author), Yanbiao Song (Author), Aimin Yang (Author), Xiuhua Xu (Author), Ning Zhang (Author), Jianzhao Gao (Author), Bin Liu (Author)
Format: Book
Published: Elsevier, 2021-06-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hypoxia induces a series of cellular adaptive responses that enable promotion of inflammation and cancer development. Hypoxia-inducible factor-1α (HIF-1α) is involved in the hypoxia response and cancer promotion, and it accumulates in hypoxia and is degraded under normoxic conditions. Here we identify prostate cancer associated transcript-1 (PCAT-1) as a hypoxia-inducible long non-coding RNA (lncRNA) that regulates HIF-1α stability, crucial for cancer progression. Extensive analyses of clinical data indicate that PCAT-1 is elevated in breast cancer patients and is associated with pathological grade, tumor size, and poor clinical outcomes. Through gain- and loss-of-function experiments, we find that PCAT-1 promotes hypoxia-associated breast cancer progression including growth, migration, invasion, colony formation, and metabolic regulation. Mechanistically, PCAT-1 directly interacts with the receptor of activated protein C kinase-1 (RACK1) protein and prevents RACK1 from binding to HIF-1α, thus protecting HIF-1α from RACK1-induced oxygen-independent degradation. These findings provide new insight into lncRNA-mediated mechanisms for HIF-1α stability and suggest a novel role of PCAT-1 as a potential therapeutic target for breast cancer.
Item Description:2162-2531
10.1016/j.omtn.2021.02.034