Ruxolitinib, a JAK1/2 Inhibitor, Ameliorates Cytokine Storm in Experimental Models of Hyperinflammation Syndrome

Hyperinflammatory syndromes comprise a heterogeneous group of disorders characterized by severe inflammation, multiple organ dysfunction, and potentially death. In response to antigenic stimulus (e.g., SARS-CoV-2 infection), overactivated CD8+ T-cells and macrophages produce high levels of proinflam...

Full description

Saved in:
Bibliographic Details
Main Authors: Eduardo Huarte (Author), Michael T. Peel (Author), Katherine Verbist (Author), Brittany L. Fay (Author), Rachel Bassett (Author), Sabrin Albeituni (Author), Kim E. Nichols (Author), Paul A. Smith (Author)
Format: Book
Published: Frontiers Media S.A., 2021-04-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hyperinflammatory syndromes comprise a heterogeneous group of disorders characterized by severe inflammation, multiple organ dysfunction, and potentially death. In response to antigenic stimulus (e.g., SARS-CoV-2 infection), overactivated CD8+ T-cells and macrophages produce high levels of proinflammatory cytokines, such as IFN-γ, TNF-α, IL-6, and IL-12. Multiple inflammatory mediators implicated in hyperinflammatory syndromes utilize the Janus kinase-signal transducers and activators of transcription (JAK-STAT) cascade to propagate their biological function. Our findings demonstrate that oral ruxolitinib dosing designed to mimic clinically relevant JAK-STAT pathway inhibition significantly reduces the harmful consequences of immune overactivation in multiple hyperinflammatory models. In contrast to monoclonal antibody therapies targeting a single cytokine, ruxolitinib effectively downregulates the functional effect of multiple cytokines implicated in hyperinflammatory states, without broad immunosuppression.
Item Description:1663-9812
10.3389/fphar.2021.650295