Identification of an Antimicrobial Peptide from the Venom of the Trinidad Thick-Tailed Scorpion <i>Tityus trinitatis</i> with Potent Activity against ESKAPE Pathogens and <i>Clostridioides difficile</i>

Envenomation by the Trinidad thick-tailed scorpion <i>Tityus trinitatis</i> may result in fatal myocarditis and there is a high incidence of acute pancreatitis among survivors. Peptidomic analysis (reversed-phase HPLC followed by MALDI-TOF mass spectrometry and automated Edman degradatio...

Full description

Saved in:
Bibliographic Details
Main Authors: Milena Mechkarska (Author), Taylor S. Cunning (Author), Megan G. Taggart (Author), Nigel G. Ternan (Author), Jérôme Leprince (Author), Laurent Coquet (Author), Thierry Jouenne (Author), Jordi Tena-Garcés (Author), Juan J. Calvete (Author), J. Michael Conlon (Author)
Format: Book
Published: MDPI AG, 2023-09-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Envenomation by the Trinidad thick-tailed scorpion <i>Tityus trinitatis</i> may result in fatal myocarditis and there is a high incidence of acute pancreatitis among survivors. Peptidomic analysis (reversed-phase HPLC followed by MALDI-TOF mass spectrometry and automated Edman degradation) of <i>T. trinitatis</i> venom led to the isolation and characterization of three peptides with antimicrobial activity. Their primary structures were established asTtAP-1 (FLGSLFSIGSKLLPGVFKLFSRKKQ.NH2), TtAP-2 (IFGMIPGLIGGLISAFK.NH2) and TtAP-3 (FFSLIPSLIGGLVSAIK.NH2). In addition, potassium channel and sodium channel toxins, present in the venom in high abundance, were identified by CID-MS/MS sequence analysis. TtAP-1 was the most potent against a range of clinically relevant Gram-positive and Gram-negative aerobes and against the anaerobe <i>Clostridioides difficile</i> (MIC = 3.1-12.5 µg/mL). At a concentration of 1× MIC, TtAP-1 produced rapid cell death (<15 min against <i>Acinetobacter baumannii</i> and <i>Staphylococcus aureus</i>). The therapeutic potential of TtAP-1 as an anti-infective agent is limited by its high hemolytic activity (LC<sub>50</sub> = 18 µg/mL against mouse erythrocytes) but the peptide constitutes a template for the design of analogs that maintain the high bactericidal activity against ESKAPE pathogens but are less toxic to human cells. It is suggested that the antimicrobial peptides in the scorpion venom facilitate the action of the neurotoxins by increasing the membrane permeability of cells from either prey or predator.
Item Description:10.3390/antibiotics12091404
2079-6382