ISO, via Upregulating MiR-137 Transcription, Inhibits GSK3β-HSP70-MMP-2 Axis, Resulting in Attenuating Urothelial Cancer Invasion

Our most recent studies demonstrate that miR-137 is downregulated in human bladder cancer (BC) tissues, while treatment of human BC cells with isorhapontigenin (ISO) elevates miR-137 abundance. Since ISO showed a strong inhibition of invasive BC formation in the N-butyl-N-(4-hydroxybutyl) nitrosamin...

Full description

Saved in:
Bibliographic Details
Main Authors: Xirui Guo (Author), Haishan Huang (Author), Honglei Jin (Author), Jiheng Xu (Author), Sanjiv Risal (Author), Jingxia Li (Author), Xin Li (Author), Huiying Yan (Author), Xingruo Zeng (Author), Lei Xue (Author), Changyan Chen (Author), Chuanshu Huang (Author)
Format: Book
Published: Elsevier, 2018-09-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Our most recent studies demonstrate that miR-137 is downregulated in human bladder cancer (BC) tissues, while treatment of human BC cells with isorhapontigenin (ISO) elevates miR-137 abundance. Since ISO showed a strong inhibition of invasive BC formation in the N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced invasive BC mouse model, the elucidation of a potential biological effect of miR-137 on antagonizing BC invasion and molecular mechanisms underlying ISO upregulation of miR-137 are very important. Here we discovered that ectopic expression of miR-137 led to specific inhibition of BC invasion in human high-grade BC T24T and UMUC3 cells, while miR-137 deletion promoted the invasion of both cells, indicating the inhibitory effect of miR-137 on human BC invasion. Mechanistic studies revealed that ISO treatment induced miR-137 transcription by promoting c-Jun phosphorylation and, in turn, abolishing matrix metalloproteinase-2 (MMP-2) abundance and invasion in BC cells. Moreover, miR-137 was able to directly bind to the 3' UTR of Glycogen synthase kinase-3β (GSK3β) mRNA and inhibit GSK3β protein translation, consequently leading to a reduction of heat shock protein-70 (HSP70) translation via targeting the mTOR/S6 axis. Collectively, our studies discover an unknown function of miR-137, directly targeting the 3' UTR of GSK3β mRNA and, thereby, inhibiting GSK3β protein translation, mTOR/S6 activation, and HSP70 protein translation and, consequently, attenuating HSP70-mediated MMP-2 expression and invasion in human BC cells. These novel discoveries provide a deep insight into understanding the biomedical significance of miR-137 downregulation in invasive human BCs and the anti-cancer effect of ISO treatment on mouse invasive BC formation. Keywords: miR-137, GSK3β, ISO, HSP70, MMP-2, bladder cancer
Item Description:2162-2531
10.1016/j.omtn.2018.05.017