Growth arrest and DNA damage‐inducible alpha regulates muscle repair and fat infiltration through ATP synthase F1 subunit alpha

Abstract Background Skeletal muscle fat infiltration is a common feature during ageing, obesity and several myopathies associated with muscular dysfunction and sarcopenia. However, the regulatory mechanisms of intramuscular adipogenesis and strategies to reduce fat infiltration in muscle remain uncl...

Full description

Saved in:
Bibliographic Details
Main Authors: Wenjing You (Author), Shiqi Liu (Author), Jianfei Ji (Author), Defeng Ling (Author), Yuang Tu (Author), Yanbing Zhou (Author), Wentao Chen (Author), Teresa G. Valencak (Author), Yizhen Wang (Author), Tizhong Shan (Author)
Format: Book
Published: Wiley, 2023-02-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_e9d83c933131464ea3ecee11dfb064d4
042 |a dc 
100 1 0 |a Wenjing You  |e author 
700 1 0 |a Shiqi Liu  |e author 
700 1 0 |a Jianfei Ji  |e author 
700 1 0 |a Defeng Ling  |e author 
700 1 0 |a Yuang Tu  |e author 
700 1 0 |a Yanbing Zhou  |e author 
700 1 0 |a Wentao Chen  |e author 
700 1 0 |a Teresa G. Valencak  |e author 
700 1 0 |a Yizhen Wang  |e author 
700 1 0 |a Tizhong Shan  |e author 
245 0 0 |a Growth arrest and DNA damage‐inducible alpha regulates muscle repair and fat infiltration through ATP synthase F1 subunit alpha 
260 |b Wiley,   |c 2023-02-01T00:00:00Z. 
500 |a 2190-6009 
500 |a 2190-5991 
500 |a 10.1002/jcsm.13134 
520 |a Abstract Background Skeletal muscle fat infiltration is a common feature during ageing, obesity and several myopathies associated with muscular dysfunction and sarcopenia. However, the regulatory mechanisms of intramuscular adipogenesis and strategies to reduce fat infiltration in muscle remain unclear. Here, we identified the growth arrest and DNA damage‐inducible alpha (GADD45A), a stress‐inducible histone folding protein, as a critical regulator of intramuscular fat (IMAT) infiltration. Methods To explore the role of GADD45A on IMAT infiltration and muscle regeneration, the gain or loss function of GADD45A in intramuscular preadipocytes was performed. The adipocyte‐specific GADD45A knock‐in (KI) mice and high IMAT‐infiltrated muscle model by glycerol injection (50 μL of 50% v/v GLY) were generated. RNA‐sequencing, histological changes, gene expression, lipid metabolism, mitochondrial function and the effect of dietary factor epigallocatechin‐3‐gallate (EGCG) treatment (100 mg/kg) on IMAT infiltration were studied. Results The unbiased transcriptomics data analysis indicated that GADD45A expression positively correlates with IMAT infiltration and muscle metabolic disorders in humans (correlation: young vs. aged people, Gadd45a and Cebpa, r2 = 0.20, P < 0.05) and animals (correlation: wild‐type [WT] vs. mdx mice, Gadd45a and Cebpa, r2 = 0.38, P < 0.05; NaCl vs. GLY mice, Gadd45a and Adipoq/Fabp4, r2 = 0.80/0.71, both P < 0.0001). In vitro, GADD45A overexpression promotes intramuscular preadipocyte adipogenesis, upregulating the expression of adipogenic genes (Ppara: +47%, Adipoq: +28%, P < 0.001; Cebpa: +135%, Fabp4: +16%, P < 0.01; Pparg: +66%, Leptin: +77%, P < 0.05). GADD45A knockdown robustly decreased lipid accumulation (Pparg: −57%, Adipoq: −35%, P < 0.001; Fabp4: −37%, P < 0.01; Leptin: −28%, P < 0.05). GADD45A KI mice exhibit inhibited skeletal muscle regeneration (myofibres: −40%, P < 0.01) and enhanced IMAT infiltration (adipocytes: +20%, P < 0.05). These KI mice have impaired exercise endurance and mitochondrial function. Mechanistically, GADD45A affects ATP synthase F1 subunit alpha (ATP5A1) ubiquitination degradation (ubiquitinated ATP5A1, P < 0.001) by recruiting the E3 ubiquitin ligase TRIM25, which decreases ATP synthesis (ATP production: −23%, P < 0.01) and inactivates the cAMP/PKA/LKB1 signalling pathway (cAMP: −36%, P < 0.01; decreased phospho‐PKA and phospho‐LKB1 protein content, P < 0.01). The dietary factor EGCG can protect against muscle fat infiltration (triglyceride: −64%, P < 0.05) via downregulating GADD45A (decreased GADD45A protein content, P < 0.001). Conclusions Our findings reveal a crucial role of GADD45A in regulating muscle repair and fat infiltration and suggest that inhibition of GADD45A by EGCG might be a potential strategy to combat fat infiltration and its associated muscle dysfunction. 
546 |a EN 
690 |a GADD45A 
690 |a EGCG 
690 |a skeletal muscle 
690 |a fat infiltration 
690 |a intramuscular adipogenesis 
690 |a metabolic disorder 
690 |a Diseases of the musculoskeletal system 
690 |a RC925-935 
690 |a Human anatomy 
690 |a QM1-695 
655 7 |a article  |2 local 
786 0 |n Journal of Cachexia, Sarcopenia and Muscle, Vol 14, Iss 1, Pp 326-341 (2023) 
787 0 |n https://doi.org/10.1002/jcsm.13134 
787 0 |n https://doaj.org/toc/2190-5991 
787 0 |n https://doaj.org/toc/2190-6009 
856 4 1 |u https://doaj.org/article/e9d83c933131464ea3ecee11dfb064d4  |z Connect to this object online.