3-Methyladenine prevents energy stress-induced necrotic death of melanoma cells through autophagy-independent mechanisms
We investigated the effect of 3-methyladenine (3MA), a class III phosphatidylinositol 3-kinase (PI3K)-blocking autophagy inhibitor, on cancer cell death induced by simultaneous inhibition of glycolysis by 2-deoxyglucose (2DG) and mitochondrial respiration by rotenone. 2DG/rotenone reduced ATP levels...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Book |
Published: |
Elsevier,
2021-09-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigated the effect of 3-methyladenine (3MA), a class III phosphatidylinositol 3-kinase (PI3K)-blocking autophagy inhibitor, on cancer cell death induced by simultaneous inhibition of glycolysis by 2-deoxyglucose (2DG) and mitochondrial respiration by rotenone. 2DG/rotenone reduced ATP levels and increased mitochondrial superoxide production, causing mitochondrial swelling and necrotic death in various cancer cell lines. 2DG/rotenone failed to increase proautophagic beclin-1 and autophagic flux in melanoma cells despite the activation of AMP-activated protein kinase (AMPK) and inhibition of mechanistic target of rapamycin complex 1 (mTORC1). 3MA, but not autophagy inhibition with other PI3K and lysosomal inhibitors, attenuated 2DG/rotenone-induced mitochondrial damage, oxidative stress, ATP depletion, and cell death, while antioxidant treatment mimicked its protective action. The protection was not mediated by autophagy upregulation via class I PI3K/Akt inhibition, as it was preserved in cells with genetically inhibited autophagy. 3MA increased AMPK and mTORC1 activation in energy-stressed cells, but neither AMPK nor mTORC1 inhibition reduced its cytoprotective effect. 3MA reduced JNK activation, and JNK pharmacological/genetic suppression mimicked its mitochondria-preserving and cytoprotective activity. Therefore, 3MA prevents energy stress-triggered cancer cell death through autophagy-independent mechanisms possibly involving JNK suppression and decrease of oxidative stress. Our results warrant caution when using 3MA as an autophagy inhibitor. |
---|---|
Item Description: | 1347-8613 10.1016/j.jphs.2021.06.003 |